Alcohol-Induced Histone Acetylation Reveals a Gene Network Involved in Alcohol Tolerance
نویسندگان
چکیده
Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.
منابع مشابه
Alcohol-Induced Neuroadaptation Is Orchestrated by the Histone Acetyltransferase CBP
Homeostatic neural adaptations to alcohol underlie the production of alcohol tolerance and the associated symptoms of withdrawal. These adaptations have been shown to persist for relatively long periods of time and are believed to be of central importance in promoting the addictive state. In Drosophila, a single exposure to alcohol results in long-lasting alcohol tolerance and symptoms of withd...
متن کاملDrug-Induced Epigenetic Changes Produce Drug Tolerance
Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca(2+)-activated K(+) channels, which regulate many aspects of neural activity. Gi...
متن کاملEpigenetic Control of Gene Expression in the Alcoholic Brain
Chronic alcohol exposure causes widespread changes in brain gene expression in humans and animal models. Many of these contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. There is an emerging appreciation for the role of epigenetic processes in alcohol-induced changes in brain gene expression and behavior. For example, chronic alcohol exposure...
متن کاملAlcohol Metabolism and Epigenetics Changes
Metabolites, including those generated during ethanol metabolism, can impact disease states by binding to transcription factors and/or modifying chromatin structure, thereby altering gene expression patterns. For example, the activities of enzymes involved in epigenetic modifications such as DNA and histone methylation and histone acetylation, are influenced by the levels of metabolites such as...
متن کاملEpigenetic regulation in alcoholic liver disease.
Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013